Abstract
The syntheses of a new Schiff base, diethyl-5-(2-hydroxybenzylidene)aminoisophthalate (HL), and a copper complex, [Cu(L2)] (1), imparting L(-), have been described. Both the ligand HL and complex 1 have been thoroughly characterized by elemental analyses, electrospray ionization mass spectrometry, FT-IR, NMR ((1)H and (13)C), electronic absorption, and emission spectral studies and their structures determined by X-ray single-crystal analyses. Distinctive chemodosimetric behavior of HL and 1 toward Hg(2+) has been established by UV/vis, emission, and mass spectral studies. Comparative studies further revealed that the chemodosimetric response solely originates from selective hydrolysis of the aldimine moiety over the ester group and 1 exhibited greater selectivity toward Hg(2+) relative to HL while the sensitivity order is reversed. Further, these followed different hydrolytic pathways but ended up with the same product analyzed for diethyl-5-aminoisophthalate (DEA). Hg(2+)-induced displacement of Cu(2+) and subsequent hydrolysis of the -HC═N- moiety in 1 affirmed the identity of the actual species undergoing hydrolysis as HL. The occurrence of Cu(2+) displacement and Hg(2+) detection via hydrolytic transformation has been supported by various physicochemical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.