Abstract
To obtain high power, well shaped picosecond pulses from gain-switched semiconductor lasers, the use of dynamic gain saturation characteristics of semiconductor laser amplifiers was investigated theoretically and experimentally. A configuration of a reflected-wave amplifier (RWA) with single-side external coupling is introduced for pulse shaping, which is found to be suitable for enhancing dynamic gain saturation. By a combination of a distributed feedback laser oscillator at 1.3 mu m in wavelength and a reflected-wave amplifier of 400 mu m cavity length with asymmetric facet reflectivities of 0.01% and 30%, single-mode optical pulses with almost no tailing, full width at half maximum of 15 ps, and peak power exceeding 50 mW were obtained without pulse broadening, despite the considerable tail structure of the incident pulse.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.