Abstract
This paper addresses the problem of noise removal in X-ray medical images. A novel scheme for image denoising is proposed, by leveraging recent advances in sparse and redundant representations. The noisy X-ray image is decomposed, with respect to an overcomplete dictionary which is either fixed or trained on the noisy image, and it is reconstructed using greedy techniques. The new scheme has been tested with both artificial and real X-ray images and it turns out that it may offer superior denoising results as compared to other existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.