Abstract
The computational work required to implement implicit Runge-Kutta methods is often dominated by the cost of solving large sets of nonlinear equations. As an alternative to modified Newton methods, iteration schemes, which sacrifice superlinear convergence for reduced linear algebra costs, have been proposed. A new scheme of this type is considered here. This scheme avoids expensive vector transformations, is computationally more efficient, and gives improved performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.