Abstract

Purpose Green energy as a transportation supply trend is irreversible. In this paper, a highway energy supply system (HESS) evolution model is proposed to provide highway transportation vehicles and service facilities with a clean electricity supply and form a new model of a source-grid-load-storage-charge synergistic highway-PV-WT integrated system (HPWIS). This paper aims to improve the flexibility index of highways and increase CO2 emission reduction of highways. Design/methodology/approach To maximize the integration potential, a new energy-generation, storage and information-integration station is established with a dynamic master–slave game model. The flexibility index is defined to evaluate the system ability to manage random fluctuations in power generation and load levels. Moreover, CO2 emission reduction is also quantified. Finally, the Lianhuo Expressway is taken as an example to calculate emission reduction and flexibility. Findings The results show that through the application of the scheduling strategy to the HPWIS, the flexibility index of the Lianhuo Expressway increased by 29.17%, promoting a corresponding decrease in CO2 emissions. Originality/value This paper proposed a new model to capture the evolution of the HESS, which provides highway transportation vehicles and service facilities with a clean electricity supply and achieves energy transfer aided by an energy storage system, thus forming a new model of a transportation energy system with source-grid-load-storage-charge synergy. An evaluation method is proposed to improve the air quality index through the coordination of new energy generation and environmental conditions, and dynamic configuration and dispatch are achieved with the master–slave game model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.