Abstract
This paper presents a scheduling problem of using multiple synthetic aperture radar (SAR) satellites to observe a large irregular area (SMA). SMA is usually considered as a kind of nonlinear combinatorial optimized problem and its solution space strongly coupled with geometry grows exponentially with the increasing magnitude of SMA. It is assumed that each solution of SMA yields a profit associated with the acquired portion of the target area, and the objective of this paper is to find the optimal solution yielding the maximal profit. The SMA is solved by means of a new method composed of three successive phases, namely, grid space construction, candidate strip generation and strip selection. First, the grid space construction is proposed to discretize the irregular area into a set of points in a specific plane rectangular coordinate system and calculate the total profit of a solution of SMA. Then, the candidate strip generation is designed to produce numerous candidate strips based on the grid space of the first phase. At last, in the strip selection, the optimal schedule for all the SAR satellites is developed based on the result of the candidate strip generation. In addition, this paper proposes a normalized grid space construction algorithm, a candidate strip generation algorithm and a tabu search algorithm with variable neighborhoods for the three successive phases, respectively. To verify the effectiveness of the proposed method in this paper, we perform simulation experiments on several scenarios and compare our method with the other seven methods. Compared to the best of the other seven methods, our proposed method can improve profit by 6.38% using the same resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.