Abstract
A scenario of the formation of isolated X-ray pulsars is discussed with an application to one of the best studied objects of this class 1E 161348-5055. This moderately luminous, 10^33 - 10^35 erg/s, pulsar with a relatively soft spectrum, kT ~ 0.6-0.8 keV, is associated with an isolated neutron star, which is located near the center of the young (~2000 yr) compact supernova remnant RCW 103 and rotates steadily (|d\nu/dt| < 2.6 x 10^-18 Hz/s) with the period of 6.7 hr. We show that in the current epoch the neutron star is in the accretor state. The parameters of the source emission can be explained in terms of the magnetic-levitation accretion scenario in which the star with the surface magnetic field of 10^12 G accretes material onto its surface from a non-Keplerian magnetic fossil disk at the rate 10^14 g/s. A neutron star could evolve to this state in a High-Mass X-ray Binary (HMXB), which had disintegrated during the supernova explosion powered by the core-collapse of its massive component. The life-time of an isolated X-ray pulsar formed this way can be as long as a few thousand years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.