Abstract

The increasing frequency and severity of Natech accidents warn us to investigate the occurrence mechanism of these events. Cascading disasters chain magnifies the impact of natural hazards due to its propagation through critical infrastructures and socio-economic networks. In order to manipulate imprecise probabilities of cascading events in Natech scenarios, this work proposes an improved Bayesian network (BN) combining with evidence theory to better deal with epistemic uncertainty in Natech accidents than traditional BNs. Effective inference algorithms have been developed to propagate system faulty in a socio-economic system. The conditional probability table (CPT) of BN in the traditional probability approach is modified by utilizing an OR/AND gate to obtain the belief mass propagation in the framework of evidence theory. Our improved Bayesian network methodology makes it possible to assess the impact and damage of Natech accidents under the environment of complex interdependence among accidents with insufficient data. Finally, a case study of Guangdong province, an area prone to natural disasters, is given. The modified Bayesian network is carried out to analyze this area’s Natech scenario. After diagnostic analysis and sensitivity analysis of human factors and the natural factor, we are able to locate the key nodes in the cascading disaster chain. Findings can provide useful theoretical support for urban managers of industrial cities to enhance disaster prevention and mitigation ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call