Abstract

Scanning force microscopy was applied to visualise the motion of single poly(butanoate-ethylmethacrylate)-graft-poly(n-butyl acrylate) molecules on silicon and SrTiO(3) substrates. Macromolecular mobility was induced by cyclic exposure of the wafers with the adsorbed brush-like macromolecules to water and alcohol vapours. Exposure to saturated alcohol vapour induced collapse of the adsorbed individual polymer chains while exposure to saturated water vapour promoted their extension. The characteristic times of both conformational changes were long enough that it was possible to visualise step-by-step the morphology transformation in situ by means of an environment-controlled scanning force microscope. Several successive collapse-decollapse cycles were recorded, and small diffusive shifts of the macromolecular position on the substrate were detected after each cycle. Manipulating and visualising single polymer molecules in situ and real time on a silicon substrate opens up new possibilities for the controlled structure formation in ultrathin polymer films. As shown on the sample of a faceted SrTiO(3) wafer, upon extension the brush-like molecules can crawl or extend along nanoscopic surface structures. Silicon can be structured both topographically and chemically at dimensions comparable to those of single polymer molecules with a variety of fabrication techniques ranging from well established conventional silicon micro- nano- machining to new tools constantly developed as dip-pen and nanoimprint lithography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.