Abstract
Evaporation rate and subsequent exposure to humid air affect the surface morphology and composition of cesium iodide (CsI) films and, in turn, their photoemissive efficiency when used as photocathodes. The surface morphology and elemental composition of 300-nm-thick CsI films grown at two different rates (1 nm/s and 0.04 nm/s), both freshly evaporated and after 24-h exposure to humid air were investigated by means of atomic force microscopy and scanning electron microscopy/electron diffraction spectroscopy. The CsI film freshly evaporated at a slow rate exhibited a granular surface presenting circular holes or craters where the CsI material was moved from the center to the boundaries. After 24-h exposure to humid air, this film coalesced in large grain showing a marked increase of surface roughness. Conversely, the CsI film grown at a fast rate mostly retained its original surface uniformity and homogeneity with no presence of holes and craters after 24-h exposure to humid air. Further, surface roughness and average peak height decreased, but the surface coalesced in large grains spaced by small fractures where the CsI coverage was almost lost. In conclusion, the films grown at a fast evaporation rate were affected by 24-h exposure to humid air less than those grown at a slow rate, and are thus expected to possess a greater long-term stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.