Abstract

The Farey sequence of order n consists of all reduced fractions a / b between 0 and 1 with positive denominator b less or equal to n. The sums of the inverse denominators 1 / b of the Farey fractions in prescribed intervals with rational bounds have a simple main term, but the deviations are determined by an interesting sequence of polygonal functions \(f_n\). In a former paper we obtained a limit function for \(n \rightarrow \infty \), which describes a scaling behaviour of the functions \(f_n\) in the vicinity of any fixed rational number a / b and which is independent of a / b. In this paper we prove that \(f_n(a/b)\) tends to zero for \(n \rightarrow \infty \) by using elementary representation formulas for \(f_n(a/b)\) as well as a variant of the prime number theorem. An application of this result immediately gives a global version of the scaling behaviour of the functions \(f_n\) around the rational numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.