Abstract

A new scaling equation of state is proposed to describe the equilibrium thermodynamic properties of liquids near the critical point. In distinction from the existing scaling equations, which are parametric, the new equation is nonparametric and is expressed directly in terms of the physical quantities (pressure, temperature, and so on). It creates a number of advantages for the traditional representation and data processing. The equation gives rise to a binodal, spinodal, and a curve of thermal capacity divergence (pseudospinodal). The equation is expressed in terms of reduced variables (the ratio of the deviation of a thermodynamic variable from its critical value to the critical value) and contains 3 system-dependent adjustable constants. With the help of this equation, we conducted an approximation of the experimental PVT data in the critical region of 4He, C2H4, and H2O with a pressure error of 0.4% and carried out a calculation of the C v 4He thermal capacity with no more than 4% error using a three-system constant determined from the PVT data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call