Abstract

Automatic cell type annotation methods are increasingly used in single-cell RNA sequencing (scRNA-seq) analysis due to their fast and precise advantages. However, current methods often fail to account for the imbalance of scRNA-seq datasets and ignore information from smaller populations, leading to significant biological analysis errors. Here, we introduce scBalance, an integrated sparse neural network framework that incorporates adaptive weight sampling and dropout techniques for auto-annotation tasks. Using 20 scRNA-seq datasets with varying scales and degrees of imbalance, we demonstrate that scBalance outperforms current methods in both intra- and inter-dataset annotation tasks. Additionally, scBalance displays impressive scalability in identifying rare cell types in million-level datasets, as shown in the bronchoalveolar cell landscape. scBalance is also significantly faster than commonly used tools and comes in a user-friendly format, making it a superior tool for scRNA-seq analysis on the Python-based platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.