Abstract

Image segmentation plays an important role in the computer vision . However, it is extremely challenging due to low resolution, high noise and blurry boundaries. Recently, region-based models have been widely used to segment such images. The existing models often utilized Gaussian filtering to filter images, which caused the loss of edge gradient information. Accordingly, in this paper, a novel local region model based on adaptive bilateral filter is presented for segmenting noisy images. Specifically, we firstly construct a range-based adaptive bilateral filter, in which an image can well be preserved edge structures as well as resisted noise. Secondly, we present a data-driven energy model, which utilizes local information of regions centered at each pixel of image to approximate intensities inside and outside of the circular contour. The estimation approach has improved the accuracy of noisy image segmentation. Thirdly, under the premise of keeping the image original shape, a regularization function is used to accelerate the convergence speed and smoothen the segmentation contour. Experimental results of both synthetic and real images demonstrate that the proposed model is more efficient and robust to noise than the state-of-art region-based models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.