Abstract

The readout requirements for instruments based on transition-edge sensors (TESs) have dramatically increased over the last decade as demand for systems with larger arrays and faster sensors has grown. Emerging systems are expected to contain many thousands of sensors and/or sensors with time constants as short as 100 ms. These requirements must be satisfied while maintaining low noise, high dynamic range, and low crosstalk. A promising readout candidate for future TES arrays is the microwave SQUID multiplexer, which offers several gigahertz of readout bandwidth per pair of coaxial cables. In microwave SQUID multiplexing, sensor signals are coupled to RF-SQUIDs embedded in superconducting microwave resonators, which are probed via a common microwave feedline and read out using gigahertz signals. This form of SQUID multiplexing moves complexity from the cryogenic stages to room temperature hardware and digital signal processing firmware which must synthesize the microwave tones and process the information contained within them. To demultiplex signals from the microwave SQUID multiplexer, we have implemented an FPGA-based firmware architecture that is flexible enough to read out a variety of differently optimized TESs. A gamma-ray spectrometer targeted at nuclear materials accounting applications, known as SLEDGEHAMMER, is an early adopter of microwave SQUID multiplexing and is driving our current firmware development effort. This instrument utilizes 300 kHz full-width half-maximum resonators with 256 channels in a one gigahertz wide band. We have recently demonstrated undegraded readout of 128 channels using two ROACH2s on a single pair of coaxial cables. This manuscript describes the firmware implementation for the readout electronics of these early array-scale demonstrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.