Abstract

A process for the multikilogram synthesis of the dual vasopressin-receptor antagonist, conivaptan hydrochloride, has been developed. This method relies on the introduction of operationally simple chemistry during the final stages of the process when two key intermediates, isolated by crystallization, are reacted to assemble the final molecule. A three-stage sequence has been developed for the synthesis of the first key amine hydrate intermediate, and modifications of the original process are described here. Major strategic improvements have been made in defining the final route to the “side chain” precursor molecule, which is the second key intermediate. These advances revolve around the acylation of an unprotected amino benzoic acid and subsequent high-yield telescoped processes for the synthesis of 4-[(biphenyl-2-ylcarbonyl)amino]benzoic acid. This novel method leads to a 4-fold increase in the overall yield of the target materials, circumvents the restricted synthetic intermediates, and constitutes a safe, reliable, adaptable, environmentally friendly, and cost-effective approach with improved manipulability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.