Abstract

Wellbore flow and interactions between wells and the reservoir can be complex. Accurate modeling of these behaviors is especially important for multilateral and other advanced wells. This paper describes a new scalable linear solver for flow simulation of detailed reservoir models with advanced wells and well groups. A general purpose research simulator serves as the computational platform, in which a multisegment well (MsWell) model is used to describe wellbore flow. In the MsWell model, the wellbore is discretized into a number of segments. Hence, the MsWell model adds a large number of equations and unknowns, which are fully coupled to the reservoir model. Operating constraints on groups of wells add one more level of complexity to the system. The new linear solver is a generalized two-stage constrained pressure residual preconditioner. A global pressure system is obtained algebraically in the first stage. The system represents the pressure coupling between the reservoir and wells accurately. The well groups are disaggregated into individual multisegment wells, which then are further reduced to a standard well-like form. The two-stage scheme serves as the inner loop of a generalized minimum residual solver. Algebraic multigrid is used to compute the first-stage pressure solution; a special block-based incomplete lower–upper preconditioner is used for the second stage. We demonstrate the superior performance of this new solver compared with state-of-the-art methods using a variety of highly detailed reservoir models with complex wells and well groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.