Abstract

A method for constructing n-stage Galois NLFSRs with period 2n-1 from n-stage maximum length LFSRs is presented. Nonlinearity is introduced into state cycles by adding a nonlinear Boolean function to the feedback polynomial of the LFSR. Each assignment of variables for which this function evaluates to 1 acts as a crossing point for the LFSR state cycle. The effect of nonlinearity is cancelled and state cycles are joined back by adding a copy of the same function to a later stage of the register. The presented method requires no extra time steps and it has a smaller area overhead compared to the previous approaches based on cross-join pairs. It is feasible for large n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.