Abstract

AbstractPerovskite solar cell (PSC) modules employing a hole transport layer (HTL) without unstable dopants possess high potential for improving operational stability. However, the low efficiencies of the devices greatly limit their commercial applications owing to the lower efficacy of the dopant‐free HTL, introduced by the unintentional n‐doping effect of volatile ions from the halide‐rich perovskite surface. Here, a scalable heterostructure integrated by a methylammonium‐free perovskite film with an iodide‐rich surface, an ultrathin interlayer of bridge‐jointed graphene oxide nanosheets (BJ‐GO), and an HTL without additional ionic dopants is developed. In this heterostructure, the iodide ions are physically immobilized by the compact 2D network, and lead defects are chemically passivated by multiple coordination bonds. Moreover, the BJ‐GO with tunable surface energy enables a highly ordered HTL a considerably improved carrier mobility by an order of magnitude. Finally, the PSC module with an area of 35.80 cm2 employing this heterostructure shows a certified efficiency of 15.3%. The encapsulated PSC modules retain over 91% of initial efficiency after the damp heat test at 85 °C and ≈85% relative humidity for 1000 h, while maintaining 90% of the initial value for 1000 h at the maximum power point under continuous 1‐Sun illumination at 60 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.