Abstract

Sensors-to-sink data in wireless sensor networks (WSNs) are typically characterized by correlation along the spatial, semantic, and/or temporal dimensions. Exploiting such correlation when performing data aggregation can result in considerable improvements in the bandwidth and energy performance of WSNs. In this paper, we first identify that most of the existing upstream routing approaches in WSNs can be translated to a correlation-unaware data aggregation structure – the shortest-path tree. Although by using a shortest-path tree, some implicit benefits due to correlation are possible, we show that explicitly constructing a correlation-aware structure can result in considerable performance improvement. Toward this end, we present a simple, scalable and distributed correlation-aware aggregation structure that addresses the practical challenges in the context of aggregation in WSNs. Through simulations and analysis, we evaluate the performance of the proposed approach with centralized and distributed correlation-aware and -unaware structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.