Abstract

The promise of spectral clustering is that it can help detect complex shapes and intrinsic manifold structure in large and high dimensional spaces. The price for this promise is the expensive computational cost for computing the eigen-decomposition of the graph Laplacian matrix--so far a necessary subroutine for spectral clustering. In this paper we bypass the eigen-decomposition of the original Laplacian matrix by leveraging the recently introduced near-linear time solver for symmetric diagonally dominant (SDD) linear systems and random projection. Experiments on several synthetic and real datasets show that the proposed approach has better clustering quality and is faster than the state-of-the-art approximate spectral clustering methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.