Abstract
Utility itemset mining, which finds the item sets based on utility factors, has established itself as an essential form of data mining. The utility is defined in terms of quantity and some interest factor. Various methods have been developed so far by the researchers to mine these itemsets but most of them are not scalable. In the present times, a scalable approach is required that can fulfill the budding needs of data mining. A Spark based novel technique has been recommended in this research paper for mining the data in a distributed way, called as Absolute High Utility Itemset Mining (AHUIM). The technique is suitable for small as well as large datasets. The performance of the technique is being measured for various parameters such as speed, scalability, and accuracy etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.