Abstract

This paper presents a novel and optimized embedded architecture based FPGA for an efficient and fast computation of grey level co-occurrence matrices (GLCM) and Haralick textures features for use in high throughput image analysis applications where time performance is critical. The originality of this architecture allows for a scalable and a totally embedded on Chip FPGA for the processing of large images. The architecture was implemented on Xilinx Virtex-FPGAs without the use of external memory and/or host machine. The implementations demonstrate that our proposed architecture can deliver a high reduction of the memory and FPGA logic requirements when compared with the state of the art counterparts and it also achieves much improved processing times when compared against optimized software implementation running on a conventional general purpose processor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.