Abstract
Scaffoldings play a critical role as temporary structures in supporting construction processes. Accidents at construction sites frequently stem from issues related to scaffoldings, including insufficient support caused by deviations from the construction design, insecure rod connections, or absence of cross-bracing, which result in uneven loading and potential collapse, leading to casualties. This research introduces a novel approach employing deep learning (i.e., YOLO v5) and augmented reality (AR), termed the scaffolding assembly deficiency detection system (SADDS), designed to aid field inspectors in discerning deficiencies within scaffolding assemblies. Inspectors have the flexibility to utilize SADDS through various devices, such as video cameras, mobile phones, or AR goggles, for the automated identification of deficiencies in scaffolding assemblies. The conducted test yielded satisfactory results, with a mean average precision of 0.89 and individual precision values of 0.96, 0.82, 0.90, and 0.89 for qualified frames and frames with the missing cross-tie rod, missing lower-tie rod, and missing footboard deficiencies, respectively. Subsequent field tests conducted at two construction sites demonstrated improved system performance compared to the training test. Furthermore, the advantages and disadvantages of employing mobile phones and AR goggles were discussed, elucidating certain limitations of the SADDS system, such as self-occlusion and efficiency issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.