Abstract

As the atmosphere warms, precipitation events are becoming less frequent but more intense. A three-year experiment in Kruger National Park, South Africa, found that fewer, more intense precipitation events encouraged woody plant encroachment. To test whether or not these treatment responses persisted over time, here, we report results from all five years of that experiment. Grass growth, woody plant growth, total fine root number and area and hydrologic tracer uptake by grasses and woody plants were measured in six treated plots (8 m by 8 m) and six control plots. Treatment effects on soil moisture were measured continuously in one treated and one control plot. During the fourth year, increased precipitation intensity treatments continued to decrease water flux in surface soils (0–10 cm), increase water flux in deeper soils (20+ cm), decrease grass growth and increase woody plant growth. Greater root numbers at 20–40 cm and greater woody plant uptake of a hydrological tracer from 45–60 cm suggested that woody plants increased growth by increasing root number and activity (but not root area) in deeper soils. During the fifth year, natural precipitation events were large and intense so treatments had little effect on precipitation intensity or plant available water. Consistent with this effective treatment removal, there was no difference in grass or woody growth rates between control and treated plots, although woody plant biomass remained higher in treated than control plots due to treatment effects in the previous four years. Across the five years of this experiment, we found that 1) small increases in precipitation intensity can result in large increases in deep (20–130 cm) soil water availability, 2) plant growth responses to precipitation intensity are rapid and disappear quickly, and 3) because woody plants accumulate biomass, occasional increases in precipitation intensity can result in long-term increases in woody plant biomass (i.e., shrub encroachment). While results are likely to be site-specific, they provide experimental evidence of large ecohydrological responses to small changes in precipitation intensity.

Highlights

  • Extensive efforts have been made to understand how increases or decreases in total precipitation, as a result of climate change, will affect hydrologic cycles and plant growth [1]

  • To provide a better estimate of the soil water that became available at each soil depth, we report the sum of positive plant available soil water (PAW) increments as PAW flux

  • During Year 5, most natural precipitation events were greater than 10 mm

Read more

Summary

Introduction

Extensive efforts have been made to understand how increases or decreases in total precipitation, as a result of climate change, will affect hydrologic cycles and plant growth [1].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.