Abstract

With global warming, the issue of urban surface overheating has emerged as one of the most urgent concerns for modern cities worldwide. However, the simulation of thermal comfort with high spatiotemporal resolution remains a challenge. In this study, an approach is presented to integrate several global meteorological raster data for the production of high spatial and temporal resolution thermal comfort raster datasets. Our approach produced a dataset in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) covering 98.30% of diurnal moments in 5 years, and the spatial coverage of the region exceeded 87%. The assessment results showed that from 2002 to 2020, mean universal thermal climate index (UTCI) slightly increases from 16.0 to 20.6 °C to 17.3–26.2 °C, dominated by no heat stress (9.0 °C–26.0 °C). The low-value center of UTCI locates in the north GBA, around Zhaoqing and northern Guangzhou, while the high-value center moved westward from Huizhou to Foshan, Dongguan, and the south of Guangzhou. Over the past 18 years, the heat stress has become larger in the spatial extent and more prolonged. The heat island effect has intensified over the past 18 years, resulting in a coexistence of the positive heat island intensity and the negative heat island intensity. The result investigates urban thermal comfort conditions for urban thermal environment management and provides a spatial reference for human-centered urban planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.