Abstract

Abstract. Summer heatwaves are becoming increasingly dangerous over Europe, and their close monitoring is essential for human activities. Typically, they are monitored using the 2 m temperature from meteorological weather stations or reanalysis datasets. In this study, the 2022 extremely warm summer over Europe is analysed using satellite land surface temperature (LST), specifically the LSA SAF (Land Surface Analysis Satellite Application Facility) all-sky LST product (available from 2004 onwards). Since climate applications of LST are still poorly explored, heatwave diagnostics derived from satellite observations are compared with those derived using ERA5/ERA5-Land reanalysis data. Results highlight the exceptionality of 2022 in different metrics such as the mean LST anomaly, area under extreme heat conditions, number of hot days and heatwave magnitude index. In all metrics, 2022 ranked first when compared with the remaining years. Compared to 2018 (next in all rankings), 2022 exceeded its LST anomaly by 0.7 °C and each pixel had on average 7 more hot days. Satellite LST complements reanalysis diagnostics, as higher LST anomalies occur over areas under severe drought, indicating a higher control and amplification of the heatwave by surface processes and vegetation stress. These cross-cutting diagnostics increase the confidence across satellite data records and reanalyses, fostering their usage in climate applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call