Abstract

Besides 2 m - temperature and precipitation, sunshine duration is one of the most important and commonly used parameter in climatology, with measured time series of partly more than 100 years in length. EUMETSAT’s Satellite Application Facility on Climate Monitoring (CM SAF) presents a climate data record for daily and monthly sunshine duration (SDU) for Europe and Africa. Basis for the advanced retrieval is a highly resolved satellite product of the direct solar radiation from measurements by Meteosat satellites 2 to 10. The data record covers the time period 1983 to 2015 with a spatial resolution of 0.05° × 0.05°. The comparison against ground-based data shows high agreement but also some regional differences. Sunshine duration is overestimated by the satellite-based data in many regions, compared to surface data. In West and Central Africa, low clouds seem to be the reason for a stronger overestimation of sunshine duration in this region (up to 20% for monthly sums). For most stations, the overestimation is low, with a bias below 7.5 h for monthly sums and below 0.4 h for daily sums. A high correlation of 0.91 for daily SDU and 0.96 for monthly SDU also proved the high agreement with station data. As SDU is based on a stable and homogeneous climate data record of more than 30 years length, it is highly suitable for climate applications, such as trend estimates.

Highlights

  • Sunshine duration has been used for decades in many different applications

  • The uncertainty of SDU was estimated in comparison to station-based sunshine duration measurements from European Climate Assessment & Datasets (ECA&D) and CLIMAT

  • ECA&D data were used as reference for comparisons of daily SDU and CLIMAT data were used as reference for comparisons of monthly SDU

Read more

Summary

Introduction

Sunshine duration has been used for decades in many different applications. It is applied in sectors such as tourism, public health, agriculture and solar energy. Current satellite-based data records reach length of more than 30 years, and retrieval algorithms deliver increasingly accurate results. This offers a great opportunity to get a spatial view of well-known parameters and to supplement station data. There are several hundreds of stations worldwide with sunshine duration observations on climatological time scales. Each of these stations has its own representativeness, instrument features and changes in instrumentation or location characteristics

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.