Abstract

Solving reinforcement learning problems in continuous space with function approximation is currently a research hotspot of machine learning. When dealing with the continuous space problems, the classicQ-iteration algorithms based on lookup table or function approximation converge slowly and are difficult to derive a continuous policy. To overcome the above weaknesses, we propose an algorithm named DFR-Sarsa(λ) based on double-layer fuzzy reasoning and prove its convergence. In this algorithm, the first reasoning layer uses fuzzy sets of state to compute continuous actions; the second reasoning layer uses fuzzy sets of action to compute the components ofQ-value. Then, these two fuzzy layers are combined to compute theQ-value function of continuous action space. Besides, this algorithm utilizes the membership degrees of activation rules in the two fuzzy reasoning layers to update the eligibility traces. Applying DFR-Sarsa(λ) to the Mountain Car and Cart-pole Balancing problems, experimental results show that the algorithm not only can be used to get a continuous action policy, but also has a better convergence performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.