Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A) is an axonal neuropathy caused by mutations in the mitofusin 2 (MFN2) gene. MFN2 mutations result in profound mitochondrial abnormalities, but the mechanism underlying the axonal pathology is unknown. Sterile α and Toll/IL-1 receptor motif-containing 1 (SARM1), the central executioner of axon degeneration, can induce neuropathy and is activated by dysfunctional mitochondria. We tested the role of SARM1 in a rat model carrying a dominant CMT2A mutation (Mfn2H361Y) that exhibits progressive dying-back axonal degeneration, neuromuscular junction (NMJ) abnormalities, muscle atrophy, and mitochondrial abnormalities - all hallmarks of the human disease. We generated Sarm1-KO (Sarm1-/-) and Mfn2H361Y Sarm1 double-mutant rats and found that deletion of Sarm1 rescued axonal, synaptic, muscle, and functional phenotypes, demonstrating that SARM1 was responsible for much of the neuropathology in this model. Despite the presence of mutant MFN2 protein in these double-mutant rats, loss of SARM1 also dramatically suppressed many mitochondrial defects, including the number, size, and cristae density defects of synaptic mitochondria. This surprising finding indicates that dysfunctional mitochondria activated SARM1 and that activated SARM1 fed back on mitochondria to exacerbate the mitochondrial pathology. As such, this work identifies SARM1 inhibition as a therapeutic candidate for the treatment of CMT2A and other neurodegenerative diseases with prominent mitochondrial pathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.