Abstract

A synthetic aperture radar (SAR) processor approach based on two-dimensional fast Fourier transform (FFT) codes coupled with an asymptotic evaluation of the unit response function is presented. For the latter, no approximation is made to the distance function, so that the full range of geometric aberrations is analytically considered, enabling an effective reference filter to be designed. The two-dimensional FFTs were designed as to run on computers of very limited memory: the required FFT is computed by means of FFTs of lower order. Two FFT codes were considered: one is faster and allows full or reduced (quick look or multilook) resolution performance to be obtained easily; the second is slower but allows the use of a space-varying filter and/or investigations on limited portions (zoom) of the image. Both codes are suited to parallel processing, e.g. by a transputer net. A full discussion on computer memory and time requirements is presented as well as first examples of image processing results.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call