Abstract
BackgroundIslet transplantation is an effective treatment for the type 1 and severe type 2 diabetes, but it is restricted by the severe lack of pancreas donors. In vitro differentiation of pancreatic progenitors into insulin-secreting cells is one of the hopeful strategies in the cell transplantation therapy of diabetes. Isoastragaloside I is one of the saponin molecules found in Astragalus membranaceus, which has been demonstrated to alleviate insulin resistance and glucose intolerance in obese mice. Study designWe established mouse pancreatic ductal organoids (mPDOs) with progenitor characteristics and an insulin promoter-driven EGFP reporter system to screen astragalus saponin components for monomers that can promote insulin-producing cell differentiation. MethodsmPDOs treated with or without astragalus saponin monomers were investigated by the insulin promoter-driven EGFP reporter, quantitative PCR, immunofluorescence and flow cytometry to evaluate the expression of endocrine progenitor and β-cell markers. ResultsIsoastragaloside I significantly promoted the expression of β-cell differentiation genes, which was demonstrated by the activation of the insulin promoter-driven EGFP reporter, as well as the significant increase of mRNA levels of the endocrine progenitor marker Ngn3 and the β-cell markers insulin1 and insulin2. Immunostaining studies indicated that the β-cell-specific C-peptide was upregulated in isoastragaloside I-treated mPDOs. FACS analysis revealed that the ratio of C-peptide-secreting cells in isoastragaloside I-treated mPDOs was over 40%. Glucose tolerance tests demonstrated that the differentiated mPDOs could secrete C-peptide in response to glucose stimulation. ConclusionsWe discover a novel strategy of inducing pancreatic ductal progenitors to differentiate into insulin-producing cells using isoastragaloside I. This approach can be potentially applied to β-cell transplantation in diabetes therapies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.