Abstract

Let $\{X_t\}$ be a stationary ergodic process with distribution $P$ admitting densities $p(x_0,\ldots, x_{n-1})$ relative to a reference measure $M$ that is finite order Markov with stationary transition kernel. Let $I_M(P)$ denote the relative entropy rate. Then $n^{-1}\log p(X_0,\ldots, X_{n-1}) \rightarrow I_M(P) \mathrm{a.s.} (P).$ We present an elementary proof of the Shannon-McMillan-Breiman theorem and the preceding generalization, obviating the need to verify integrability conditions and also covering the case $I_M(P) = \infty$. A sandwich argument reduces the proof to direct applications of the ergodic theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.