Abstract

This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.