Abstract

The use of machine learning methods in classical and quantum systems has led to novel techniques to classify ordered and disordered phases, as well as uncover transition points in critical phenomena. Efforts to extend these methods to dynamical processes in complex networks is a field of active research. Network-percolation, a measure of resilience and robustness to structural failures, as well as a proxy for spreading processes, has numerous applications in social, technological, and infrastructural systems. A particular challenge is to identify the existence of a percolation cluster in a network in the face of noisy data. Here, we consider bond-percolation, and introduce a sampling approach that leverages the core-periphery structure of such networks at a microscopic scale, using onion decomposition, a refined version of the k-core. By selecting subsets of nodes in a particular layer of the onion spectrum that follow similar trajectories in the percolation process, percolating phases can be distinguished from non-percolating ones through an unsupervised clustering method. Accuracy in the initial step is essential for extracting samples with information-rich content, that are subsequently used to predict the critical transition point through the confusion scheme, a recently introduced learning method. The method circumvents the difficulty of missing data or noisy measurements, as it allows for sampling nodes from both the core and periphery, as well as intermediate layers. We validate the effectiveness of our sampling strategy on a spectrum of synthetic network topologies, as well as on two real-word case studies: the integration time of the US domestic airport network, and the identification of the epidemic cluster of COVID-19 outbreaks in three major US states. The method proposed here allows for identifying phase transitions in empirical time-varying networks.

Highlights

  • The use of machine learning methods in classical and quantum systems has led to novel techniques to classify ordered and disordered phases, as well as uncover transition points in critical phenomena

  • We investigate the limiting cases of uniform—and heavy-tailed—distribution and demonstrate significant differences between networks of opposite topologies, with the former having a homogeneous population of nodes across layers, while the latter containing dense layers interspersed by sparse regions

  • We show that sampling from the dense layers with nodes containing similar dynamical information in the percolation process, provides significantly higher accuracy than compared to sampling from the sparse layers or sampling nodes randomly, independent of whether nodes lie in the core or the periphery

Read more

Summary

Percolation on different network topologies

The method identifies layers where nodes disconnect from the GCC at comparable values of the control parameter, yielding a balanced training data in the subsequent learning phase and leading to high clustering accuracy of dynamical phases

Effect of sampling on clustering
Identifying critical transition points
Discussion
Findings
Additional information

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.