Abstract

We study approximations of optimization problems with probabilistic constraints in which the original distribution of the underlying random vector is replaced with an empirical distribution obtained from a random sample. We show that such a sample approximation problem with a risk level larger than the required risk level will yield a lower bound to the true optimal value with probability approaching one exponentially fast. This leads to an a priori estimate of the sample size required to have high confidence that the sample approximation will yield a lower bound. We then provide conditions under which solving a sample approximation problem with a risk level smaller than the required risk level will yield feasible solutions to the original problem with high probability. Once again, we obtain a priori estimates on the sample size required to obtain high confidence that the sample approximation problem will yield a feasible solution to the original problem. Finally, we present numerical illustrations of how these results can be used to obtain feasible solutions and optimality bounds for optimization problems with probabilistic constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.