Abstract

Allyl alcohol and water can form the lowest boiling point azeotrope, but it is very hard to acquire high-purity allyl alcohol by normal distillation methods. Herein, a separation and purification protocol is developed for perfectly separating an azeotropic mixture of allyl alcohol and water using the salting-out method, in which three potassium phosphate salts, K5P3O10, K3PO4, and K4P2O7, are systematically investigated as salting-out agents, and finally a product consisting of > 99% allyl alcohol is obtained. A thermodynamic study demonstrates that this process involves endothermy and increment entropy. There is a good correlation between the solubility of allyl alcohol and the molar concentration of salt (mol per 1 kg water), and the solubility of the allyl alcohol in the organic phase or the water phase can be forecast using the mass percentage of salts. This work provides a new methodology for the efficient separation of an azeotropic mixture of allyl alcohol and water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.