Abstract
This work aimed at investigating the interactive effects of salt-signaling molecules, i.e., ethylene, extracellular ATP (eATP), H2O2, and cytosolic Ca2+ ([Ca2+]cyt), on the regulation of K+/Na+ homeostasis in Arabidopsis thaliana. The presence of eATP shortened Col-0 hypocotyl length under no-salt conditions. Moreover, eATP decreased relative electrolyte leakage and lengthened root length significantly in salt-treated Col-0 plants but had no obvious effects on the ethylene-insensitive mutants etr1-1 and ein3-1eil1-1. Steady-state ionic flux kinetics showed that exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) and eATP-Na2 (an eATP donor) significantly increased Na+ extrusion and suppressed K+ loss during short-term NaCl treatment. Moreover, ACC remarkably raised the fluorescence intensity of salt-elicited H2O2 and cytosolic Ca2+. Our qPCR data revealed that during 12 h of NaCl stress, application of ACC increased the expression of AtSOS1 and AtAHA1, which encode the plasma membrane (PM) Na+/H+ antiporters (SOS1) and H+-ATPase (H+ pumps), respectively. In addition, eATP markedly increased the transcription of AtEIN3, AtEIL1, and AtETR1, and ACC treatment of Col-0 roots under NaCl stress conditions caused upregulation of AtRbohF and AtSOS2/3, which directly contribute to the H2O2 and Ca2+ signaling pathways, respectively. Briefly, ethylene was triggered by eATP, a novel upstream signaling component, which then activated and strengthened the H2O2 and Ca2+ signaling pathways to maintain K+/Na+ homeostasis under salinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.