Abstract

Cellulases, distributed in at least 15 families of glycoside hydrolases, will play a key role in biomass conversion and renewable energy challenges of the future. Cel5B from Clostridium thermocellum is a β-1,4-endoglucanase and a member of family 5 of glycoside hydrolases (GH5) and is characterized by an (α/β)(8) barrel structure. In contrast to other retaining enzymes, in which the catalytic carboxylate groups (glutamate or aspartate) are positioned ≈ 5.5 Å apart to facilitate nucleophilic attack on the anomeric carbon of the sugar substrate, these two residues in Cel5B are positioned ≈ 10 Å from each other in the unliganded wild-type structure. The structure of the enzyme solved in complex with a cleavage product (cellobiose) revealed ligand-induced conformational changes in the loop carrying Glu140 (proton donor). The reorientation of Glu140 in the complex reduces the separation of the catalytic glutamate residues to 4.3 Å. In this study, we took advantage of conventional and steered molecular dynamics (MD) simulations along with in silico and in vitro mutagenesis to investigate the ligand-induced changes of the enzyme and interactions involved in preservation of Cel5B conformations in the presence and absence of substrate. We determined that the variation in separation of catalytic glutamates in the absence and presence of substrate is due to the different protonation states of the proton donor glutamate that is largely governed by conformational changes in the β3α3 loop. In the absence of substrate, the conformation of Cel5B is preserved by an electrostatic interaction between deprotonated Glu140 and protonated His91. The ion pair is interrupted upon the binding of substrate, and the positional displacement of the β3α3 loop allows Glu140 to become oriented within the active site in a less hydrophilic microenvironment that assists in Glu140 protonation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call