Abstract
This work proposes a model of visual bottom-up attention for dynamic scene analysis. Our work adds motion saliency calculations to a neural network model with realistic temporal dynamics [(e.g., building motion salience on top of De Brecht and Saiki Neural Networks 19:1467-1474, (2006)]. The resulting network elicits strong transient responses to moving objects and reaches stability within a biologically plausible time interval. The responses are statistically different comparing between earlier and later motion neural activity; and between moving and non-moving objects. We demonstrate the network on a number of synthetic and real dynamical movie examples. We show that the model captures the motion saliency asymmetry phenomenon. In addition, the motion salience computation enables sudden-onset moving objects that are less salient in the static scene to rise above others. Finally, we include strong consideration for the neural latencies, the Lyapunov stability, and the neural properties being reproduced by the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.