Abstract
Rare earth elements (REEs) have attracted widely attentions because of their excellent properties, however, radioactive waste residue generated during the REEs production has created serious environmental problems. This study aimed to develop a safer and cleaner technology, including residue leaching, thorium (Th) separating and REEs recovering, for the proper disposal of radioactive waste residue from ion-absorbed rare earth separation industry to reduce the environmental hazards. First, the chemical composition of residue was analyzed. Then, the leaching factors such as acid type, acid concentration and liquid-solid ratio were investigated and a multi-step leaching process was proposed to improve acid utilization and the leaching of REEs. After the multi-step leaching with HCl, the total leaching efficiency of REEs and Th were higher than 98.14% and 99.07%, respectively. Next, a commercial extractant of sec-octylphenoxy acetic acid (CA-12) was used to separate Th and enrich REEs from the residue leachate. The extraction factors of CA-12 toward Th were investigated in detail and a fractional extraction for separating Th and enriching lanthanides from the leachate of residue was carried out, showing that the separation efficiency of Th was higher than 99.53% and the concentration of lanthanides in the concentrated solution was 223.19 g L−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.