Abstract

In this paper we consider numerical approximations of a constraint minimization problem, where the object function is a quadratic Dirichlet functional for vector fields and the interior constraint is given by a convex function. The solutions of this problem are usually referred to as harmonic maps. The solution is characterized by a nonlinear saddle point problem, and the corresponding linearized problem is well-posed near strict local minima. The main contribution of the present paper is to establish a corresponding result for a proper finite element discretization in the case of two space dimensions. Iterative schemes of Newton type for the discrete nonlinear saddle point problems are investigated, and mesh independent preconditioners for the iterative methods are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.