Abstract

Polymeric materials that undergo photoinduced degradation have wide application in fields such as controlled release. Most methods for photoinduced degradation rely on the UV or near-UV region of the electromagnetic spectrum; however, use of the deeply penetrating and benign wavelengths of visible light offers a multitude of advantages. Here we report a lactone monomer for ring-opening copolymerizations to introduce a sacrificial linker into a polymer backbone which can be cleaved by reactive oxygen species which are produced by a photocatalyst under visible light irradiation. We find that copolymers of this material readily degrade under visible light. We followed polymer degradation using a continuous flow size exclusion chromatography system, the components of which are described herein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call