Abstract
In this article, we investigate the construction of spirals on an equilateral triangle and prove that these spirals are geometric. In further analysing these spirals we show that both the male (straight line segments) and female (curves) forms of the spiral exhibit exactly the same growth ratios and that these growth ratios are constant independent of the iteration of the spiral. In particular, we show that ratio of any two successive radius vectors from the ‘centre’ of the spiral as we move inwards towards that ‘centre’ is always 1/2. This same elegant result is also shown to be true for successive chords. All our results are demonstrated using mostly coordinate and transformational geometry. Finally we look at two methods for constructing these spirals with ruler and compass to maximum accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematical Education in Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.