Abstract

By exploiting the Kerr-Schild gauge, we study the scattering of a massive (charged) scalar off a Kerr-Newman black hole. In this gauge, the interactions between the probe and the target involve only tri-linear vertices. We manage to write down the tree-level scattering amplitudes in analytic form, from which we can construct an expression for the eikonal phase which is exact in the spin of the black hole at arbitrary order in the Post-Minkowskian expansion. We compute the classical contribution to the cross-section and deflection angle at leading order for a Kerr black hole for arbitrary orientation of the spin. Finally, we test our method by reproducing the classical amplitude for a Schwarzschild black hole at second Post-Minkowskian order and outline how to extend the analysis to the Kerr-Newman case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call