Abstract

Developing a spatiotemporal-controlled nitric oxide (NO) delivery nanoplatform is highly desirable for its biological applications as a tumor inhibitor and antibacterial agent. In this study, a novel multifunctional magnetic nanoplatform {Fe3O4@PDA@Ru-NO@FA} (1) was developed for the near-infrared (NIR) light-controlled release of NO in which a ruthenium nitrosyl (Ru-NO) donor and a folic acid (FA)-directing group were covalently functionalized onto Fe3O4@PDA. Nanoplatform 1 preferentially accumulated in folate receptor-overexpressing cancer cell lines and magnetic field-guided tumor tissue, instantly released NO, and simultaneously produced a prominent photothermal effect upon 808 nm NIR light irradiation, leading to remarkable in vitro and in vivo antitumor efficacy. When nanoplatform 1 was treated only once, the potential MRI contrast agent was sufficient to significantly inhibit or eliminate the tumor tissues in living mice, thus offering opportunities for future NO-involved multimodal cancer therapy. In addition, a NO delivery nanoplatform {Fe3O4@PDA@Ru-NO} was imbedded in the matrix of a chitosan (CS)-poly(vinyl alcohol) (PVA) material to develop a hybrid thermosensitive CS-PVA/NO hydrogel. The CS-PVA/NO hydrogels demonstrated mild (<150 mW cm-2) NIR light-controlled NO delivery and thus produced an efficient antibacterial effect for both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Therefore, these hydrogels have potential as antibacterial dressings for wound bacterial infection treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.