Abstract

In this paper a new Runge---Kutta type scheme is introduced for nonlinear stochastic partial differential equations (SPDEs) with multiplicative trace class noise. The proposed scheme converges with respect to the computational effort with a higher order than the well-known linear implicit Euler scheme. In comparison to the infinite dimensional analog of Milstein type scheme recently proposed in Jentzen and Rockner (2012), our scheme is easier to implement and needs less computational effort due to avoiding the derivative of the diffusion function. The new scheme can be regarded as an infinite dimensional analog of Runge---Kutta method for finite dimensional stochastic ordinary differential equations (SODEs). Numerical examples are reported to support the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.