Abstract
The ruled residue theorem characterises residue field extensions for valuations on a rational function field. Under the assumption that the characteristic of the residue field is different from 2 this theorem is extended here to function fields of conics. The main result is that there is at most one extension of a valuation on the base field to the function field of a conic for which the residue field extension is transcendental but not ruled. Furthermore the situation when this valuation is present is characterised.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.