Abstract

The increasing popularity of Twitter as social network tool for opinion expression as well as information retrieval has resulted in the need to derive computational means to detect and track relevant topics/events in the network. The application of topic detection and tracking methods to tweets enable users to extract newsworthy content from the vast and somehow chaotic Twitter stream. In this paper, we apply our technique named Transaction-based Rule Change Mining to extract newsworthy hashtag keywords present in tweets from two different domains namely; sports (The English FA Cup 2012) and politics (US Presidential Elections 2012 and Super Tuesday 2012). Noting the peculiar nature of event dynamics in these two domains, we apply different time-windows and update rates to each of the datasets in order to study their impact on performance. The performance effectiveness results reveal that our approach is able to accurately detect and track newsworthy content. In addition, the results show that the adaptation of the time-window exhibits better performance especially on the sports dataset, which can be attributed to the usually shorter duration of football events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.