Abstract
Computer-assisted pronunciation training (CAPT) is a helpful method for self-directed or long-distance foreign language learning. It greatly benefits from the progress, and of acoustic signal processing and artificial intelligence techniques. However, in real-life applications, embedded solutions are usually desired. This paper conceives a register-transfer level (RTL) core to facilitate the pronunciation diagnostic tasks by suppressing the mulitcollinearity of the speech waveforms. A recently proposed heterogeneous machine learning framework is selected as the French phoneme pronunciation diagnostic algorithm. This RTL core is implemented and optimized within a very-high-level synthesis method for fast prototyping. An original French phoneme data set containing 4830 samples is used for the evaluation experiments. The experiment results demonstrate that the proposed implementation reduces the diagnostic error rate by 0.79–1.33% compared to the state-of-the-art and achieves a speedup of 10.89× relative to its CPU implementation at the same abstract level of programming languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.